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In this paper, a finite difference code for Direct and Large Eddy Simulation (DNS/LES) of
incompressible flows is presented. This code is an intermediate tool between fully spectral
Navier–Stokes solvers (limited to academic geometry through Fourier or Chebyshev repre-
sentation) and more versatile codes based on standard numerical schemes (typically only
second-order accurate). The interest of high-order schemes is discussed in terms of imple-
mentation easiness, computational efficiency and accuracy improvement considered
through simplified benchmark problems and practical calculations. The equivalence rules
between operations in physical and spectral spaces are efficiently used to solve the Poisson
equation introduced by the projection method. It is shown that for the pressure treatment,
an accurate Fourier representation can be used for more flexible boundary conditions than
periodicity or free-slip. Using the concept of the modified wave number, the incompressibil-
ity can be enforced up to the machine accuracy. The benefit offered by this alternative
method is found to be very satisfactory, even when a formal second-order error is intro-
duced locally by boundary conditions that are neither periodic nor symmetric. The useful-
ness of high-order schemes combined with an immersed boundary method (IBM) is also
demonstrated despite the second-order accuracy introduced by this wall modelling strat-
egy. In particular, the interest of a partially staggered mesh is exhibited in this specific con-
text. Three-dimensional calculations of transitional and turbulent channel flows emphasize
the ability of present high-order schemes to reduce the computational cost for a given accu-
racy. The main conclusion of this paper is that finite difference schemes with quasi-spectral
accuracy can be very efficient for DNS/LES of incompressible flows, while allowing flexibility
for the boundary conditions and easiness in the code development. Therefore, this compro-
mise fits particularly well for very high-resolution simulations of turbulent flows with rel-
atively complex geometries without requiring heavy numerical developments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

For fundamental flows in academic configuration, the usefulness of highly accurate numerical schemes for DNS/LES is
fully recognized. For very simplified geometries, in terms of accuracy and computational efficiency, the most spectacular
gain is obtained using spectral methods based on Fourier or Chebyshev representation [5]. The various combinations be-
tween these two types of spectral discretization have allowed numerous authors to consider efficiently some fundamental
. All rights reserved.
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turbulent problems in the context of incompressible flows. Among these fundamental problems, one could cite homoge-
neous turbulence (full Fourier representation), transitional or turbulent channel flow (mixed Fourier–Chebyshev represen-
tation) or turbulence in a cavity (full Chebyshev representation), etc. Unfortunately, for fundamental problems in slightly
more complex geometry, the full spectral approach in Fourier or Chebyshev space is not appropriate. Furthermore, despite
the recent progress in computational fluid dynamics (CFD) methods, the use of sophisticated meshes combined with high-
order schemes remains a challenging task that requires important numerical developments to accommodate accuracy and
efficiency. For a general presentation of this ambitious numerical strategy, see [8] where the authors focus on collocation and
spectral elements for the simulation of incompressible flows.

To better understand a wide range of transitional or turbulent phenomena [25], many DNS/LES studies of fundamental
flows in non-academic geometries remain to be performed. The term non-academic means here that the geometry is not
as complex as in a real industrial configuration, while not being simple enough to allow the straightforward use of
high-order methods, spectral or not. To treat favourably that kind of flows, this paper presents an intermediate approach
leading to a compromise between accuracy of spectral methods and versatility of industrial codes. To our knowledge, the
potential of such an incompressible Navier–Stokes solver has not been investigated in the literature. In a complementary
way to collocation and spectral elements, the high-order strategy considered in this paper is based on finite difference
schemes implemented on a Cartesian mesh, the main advantages of this specific numerical configuration being its simplicity
and efficiency. It will be shown that such a numerical code can be significantly more versatile than a fully spectral code while
offering in practice a comparable accuracy for the DNS of turbulent flows. Furthermore, to increase the potential of the code,
the interest of its combination with an immersed boundary method (IBM) will also be evaluated, so that any solid wall
geometry can be freely imposed despite the use of a simple Cartesian mesh.

It is well known that in terms of numerical development and computational efficiency, the enforcement of incompress-
ibility can be critical, especially for high-order methods. In this paper, using a projection method, a fully spectral Poisson
solver is proposed, in the three spatial directions, even if the boundary conditions do not seem to suit well for a Fourier rep-
resentation. The advantages of this technique are discussed in terms of computational efficiency, accuracy and simplicity.
Several validations are proposed to show the potential of this approach through the use of high-order schemes, the boundary
condition treatment and the choice of the mesh organisation (collocated or partially staggered configuration). The results are
analysed in order to target the general context for which quasi-spectral accurate schemes could be really attractive.

The organisation of the paper is as follows. After an overview of the general framework of present numerical methods in
Sections 2 and 3, the treatment of the pressure is detailed in Section 4 where the benefit of the modified spectral formalism is
argued. Furthermore, an extension toward non-regular meshes is proposed in Section 5. Finally, a set of formal and practical
validations is presented and analysed in Section 7 to evaluate the actual benefit of present high-order method.
2. General framework of the numerical method

2.1. Governing equations

The governing equations are the forced incompressible Navier–Stokes equations
@u
@t
¼ �$p� 1

2
½$ðu� uÞ þ ðu:$Þu� þ m$2uþ f ð1Þ

$:u ¼ 0 ð2Þ
where pðx; tÞ is the pressure field (for a fluid with a constant density q ¼ 1) and uðx; tÞ the velocity field. In these forced
Navier–Stokes equations, the forcing field fðx; tÞ is used through an immersed boundary method or sometimes to perform
numerical tests where analytical solutions are available thanks to a relevant definition of f. More details about the exact
expression of f will be given in the following, depending on the physical problem considered. Note that convective terms
are written in the skew-symmetric form. This specific form is used in this study as it allows the reduction of aliasing errors
while remaining energy conserving for the spatial discretization permitted in the code [17].

2.2. Time advancement

The time advancement of Eq. (1) can be expressed as
u� � uk

Dt
¼ akFk þ bkFk�1 � ck$~pk þ ck

~fkþ1 ð3Þ
u�� � u�

Dt
¼ ck$~pk ð4Þ

ukþ1 � u��

Dt
¼ �ck$~pkþ1 ð5Þ
with



1 See
review.
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Fk ¼ �1
2
½$ðuk � ukÞ þ ðuk:$Þuk� þ m$2uk ð6Þ
and
~pkþ1 ¼ 1
ckDt

Z tkþ1

tk

p dt; ~fkþ1 ¼ 1
ckDt

Z tkþ1

tk

f dt ð7Þ
for a Runge–Kutta scheme with coefficient couples ak; bk (and ck ¼ ak þ bk for simplicity) on nk sub-time steps, k ¼ 1; . . . ;nk

with t1 ¼ tn and tnk
¼ tnþ1 (Dt ¼ tnþ1 � tn being the full time step). In this paper, depending on the flow configuration, two

temporal schemes can be used: a third-order Runge–Kutta scheme with nk ¼ 3 (see [42] for the values of ak; bk allowing this
low-storage) or a second-order Adams–Bashforth scheme with simply nk ¼ 1 and ða1; b1Þ ¼ ð3=2;�1=2Þ. In this writing, the
pressure and forcing terms are expressed through their time-averaged values on a given sub-step ckDt, indicated by the tilde
in ~pkþ1 and ~fkþ1.

2.3. Boundary conditions of the computational domain

The governing Eqs. (1) and (2) are directly solved in a computational domain Lx � Ly � Lz discretized on a Cartesian mesh
of nx � ny � nz nodes. On each limit of the domain x ¼ �Lx=2; y ¼ �Ly=2 and z ¼ �Lz=2, periodic, free-slip, no-slip or open
conditions can be applied depending on the flow configuration considered. Periodic or free-slip boundary conditions can
be imposed directly via the spatial discretization without specific care in the time advancement. In contrary, the use of
Dirichlet conditions on the velocity (for no-slip or open conditions) needs to be defined according to the time advancement
procedure. Here, as a three-step fractional step method is used, the Dirichlet boundary conditions on the velocity can be im-
posed just after the first step (3) directly on u�, allowing a Dt2 accuracy on the final velocity ukþ1 [6]. In addition, conventional
homogeneous Neumann conditions are used to solve the pressure (see the next section for more details about the specific
Poisson equation solved to compute the pressure). The interest of the homogeneous Neumann condition for the pressure will
be discussed in the Section 4 dedicated to the pressure discretization.

2.4. Pressure treatment and immersed boundary method

In a classical fractional step method, the incompressibility condition (2) can be verified at the end of each sub-time step
$:ukþ1 ¼ 0 ð8Þ
through the solving of a Poisson equation
$:$~pkþ1 ¼ $:u��

ckDt
ð9Þ
that provides the estimation of ~pkþ1 required to perform the correction (5). In the present work, this conventional incom-
pressibility treatment is used only for academic flows. In order to simulate flows in presence of solid walls with relatively
complex geometries, the numerical code can be combined with an immersed boundary method (IBM). IBM is very attractive
by avoiding sophisticated meshes and their associated loss of accuracy and increase of computational cost. In this study, a
direct forcing method is considered, consisting in the imposition of a target velocity u0ðx; tÞ on the velocity solution uðx; tÞ in
the solid body region. In a general IBM, the forcing term f of Eq. (1) is defined in order to verify more or less carrefully the
expected boundary condition at the wall of the solid body.1 In the present study, using a direct method, the forcing term in
(3) can be expressed as
ck
~fkþ1 ¼ e �akFk � bkFk�1 þ ck$~pk þ ukþ1

0 � uk

Dt

� �
ð10Þ
with e ¼ 1 in the solid body region and e ¼ 0 everywhere else. As for a conventional Dirichlet condition, the present definition
of ~fkþ1 allows the exact prescription of u� in the forcing region so that the final error on ukþ1 is second-order in time, namely
ukþ1 ¼ ukþ1

0 þ OðDt2Þwhen e ¼ 1. The target velocity u0ðx; tÞ is calibrated in order to satisfy the no-slip condition at the wall of
the solid body while ensuring the regularity of the velocity field across the immersed surface (see [34,33] for more details). As
the target velocity is not necessarily divergence free [34,33] have proposed to solve a specific pressure equation
$ � $~pkþ1 ¼ $: ð1� eÞu��½ �
ckDt

ð11Þ
where the conventional Poisson Eq. (9) is recovered for e ¼ 0 whereas inside the solid body, the condition e ¼ 1 yields the
Laplace equation. It is therefore possible to prescribe freely the level of divergence inside the solid body by satisfying a mod-
ified divergence condition expressed as
for instance [2,9,12,35,38,40] to have a non-exhaustive view about the diversity of the techniques already successfully developed, and also [27] for a
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$ � ukþ1 ¼ $ � ðeukþ1
0 Þ ð12Þ
This internal motion (given by the target velocity) introduces a mass source/sink inside the body, this artificial flow being
useful for the regularity of the solution when high-order schemes are used for the spatial differentiation [34,33].

3. Spatial discretization of convective and viscous terms

Let us consider a uniform distribution of nx nodes xi on the domain ½0; Lx� with xi ¼ ði� 1ÞDx for 1 6 i 6 nx. The approx-
imation of values f 0i ¼ f 0ðxiÞ of the first derivative f 0ðxÞ of the function f ðxÞ can be related to values fi ¼ f ðxiÞ by a finite differ-
ence scheme of the form
af 0i�1 þ f 0i þ af 0iþ1 ¼ a
fiþ1 � fi�1

2Dx
þ b

fiþ2 � fi�2

4Dx
ð13Þ
By choosing a ¼ 1=3; a ¼ 14=9 and b ¼ 1=9, this approximation is sixth-order accurate while having a so-called ‘‘quasi-spec-
tral behaviour” [24] due to its capabilities to represent accurately a wide range of scales. The compromise of the sixth-order
accuracy has been chosen to maintain a compact formulation (a three- and five-node stencil for f 0i and fi, respectively) via the
use of a Hermitian structure of the scheme with a – 0. Note however that the present approach can be straightforwardly
adapted to centred finite difference schemes of higher order if necessary.

Analogous relations can be established for the approximation of the second derivative values f 00i ¼ f 00ðxiÞ with
af 00i�1 þ f 00i þ af 00iþ1 ¼ a
fiþ1 � 2f i þ fi�1

Dx2 þ b
fiþ2 � 2f i þ fi�2

4Dx2 þ c
fiþ3 � 2f i þ fi�3

9Dx2 ð14Þ
By choosing a ¼ 2=11; a ¼ 12=11; b ¼ 3=11 and c ¼ 0, this approximation is sixth-order accurate with the same favourable
properties of the first derivative in terms of ‘‘spectral-like” resolution [24]. To control the aliasing errors via the viscous term,
this type of schemes can also be defined to be over-dissipative at the highest wave numbers (in the spectral range where
even a high-order finite difference scheme becomes inaccurate), through the use of a less compact formulation, with for in-
stance a ¼ 0:47959871686180711, a ¼ 0:42090288706093404, b ¼ 1:7020738409366740 and c ¼ �0:16377929427399390
that preserves the sixth-order accuracy of the scheme.

For the present code, the partial differentiation of convective and viscous terms represented by Fk in definition (6) are
performed with high-order compact schemes (13) and (14) for the first and second derivatives. As already stressed, four dif-
ferent boundary conditions can be considered in each spatial direction. The periodic and free-slip (equivalent to symmetric
and antisymmetric conditions) boundary conditions allow the use of schemes (13) and (14) for all the nodes considered.
More precisely, the schemes (13) and (14) just need to be relevantly modified near the borders i ¼ 1 and i ¼ nx through
the substitution of the extra-node (sometimes called ‘‘ghost”) values f0; f�1; fnxþ1; fnxþ2 by their counterparts f1; f2; fnx�1; fnx�2.
For a periodic boundary condition, this type of substitution for f ; f 0 and f 00 can be written
f0 ! fnx ; f�1 ! fnx�1; f 00 ! f 0nx
; f 000 ! f 00nx

; ð15Þ
while symmetric and antisymmetric conditions lead to
f0 ! f2; f�1 ! f3; f 00 ! �f 02; f 000 ! f 002 ; ð16Þ
and
f0 ! �f2; f�1 ! �f3; f 00 ! f 02; f 000 ! �f 002 ; ð17Þ
respectively. For simplicity, only relations on the left boundary condition (near i ¼ 1) are given here, their right counterparts
(near i ¼ nx) being easily deduced.

When no-slip or open (i.e. Dirichlet for velocity) boundary conditions are used, nothing is assumed concerning the flow
outside the computational domain. Single sided formulations are used for the approximation of first and second derivatives
for these types of boundaries using relations of the form
f 01 þ 2f 02 ¼
1

2Dx
ð�5f 1 þ 4f 2 þ f3Þ

f 001 þ 11f 002 ¼
1

Dx2 ð13f 1 � 27f 2 þ 15f 3 � f4Þ ð18Þ
that are third-order accurate [24]. At the adjacent nodes, because a three-point formulation must be used, Padé schemes are
employed with
1
4

f 01 þ f 02 þ
1
4

f 03 ¼
3
2

f3 � f1

2Dx
1

10
f 001 þ f 002 þ

1
10

f 003 ¼
6
5

f3 � 2f 2 þ f1

Dx2 ð19Þ
these schemes being fourth-order accurate.
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In terms of computational techniques, present compact Hermitian schemes (with a – 0) for convective and viscous terms
just need to inverse tridiagonal matrices. The most expensive derivative calculation is obtained for a periodic direction that
needs to inverse a cyclic matrix. However, the computation of derivatives remains cheaper than what is required by pseudo-
spectral methods mainly because of the non-linear nature of the convective terms. This difference can be significantly en-
larged if additional non-linear terms need to be treated through the use of LES subgrid models for instance. For this reason,
even if spectral methods can be used for the treatment of periodic directions, a better compromise can be found in terms of
computational efficiency with the compact schemes described above. On the contrary, the spectral approach is clearly more
efficient for linear equations. The main subject of the following section deals with the opportunity to take advantage of this
favourable property of Fourier methods for the treatment of the Poisson equation.
4. Spatial discretization of the pressure

It is well known that the treatment of incompressibility is a real difficulty to obtain solutions of incompressible Navier–
Stokes equations. The unavoidable solving of the Poisson Eqs. (9) and (11) introduced by the fractional step method can be
computationally very expensive, especially when high-order schemes are used in combination with iterative techniques.
This point is so delicate that in terms of computational cost, the use of second-order schemes could be finally more effi-
cient. Based on high-order finite difference schemes and expressed in physical space, the inversion of a Poisson equation
requires sophisticated methods that can be computationally expensive (see [26] for an example of 3D solver of Poisson’s
equation based on compact schemes). On the contrary, performed in Fourier space, the equivalent operation is much
cheaper and easy to implement with the help of Fast Fourier Transform (FFT) routines. In first analysis, it seems logical
to think that the Fourier approach for the pressure treatment is restricted to the same set of boundary conditions used
for the remaining part of the Navier–Stokes equations, namely periodic or free-slip boundary conditions. However, it is
well known that the Fourier formalism can be used advantageously in order to obtain a second-order accurate solution
from a Poisson equation with homogeneous Neumann conditions (see for instance [41,39,16]). The strategy suggested in
this study is to follow this idea, by evaluating its interest in a numerical code based on compact high-order finite difference
schemes. To emphasize the simplicity of the method, its principle is directly presented in the 3D configuration described in
Section 4.5.

In the numerical strategy proposed in this paper, the velocity components are always located at the same position. The
only staggering concerns the pressure field that can be located at the velocity mesh nodes (collocated mesh, see Fig. 1, left) or
shifted by a half-mesh in each spatial direction (staggered mesh, see Fig. 1, right). Such a partial staggering, initially proposed
by [10] and further developed by [1,11] using second-order schemes, is easy to implement because it does not require exten-
sive use of mid-point interpolations, these procedures being computationally expensive when combined with high-order
schemes. Another point is that any numerical code based on collocated meshes can be easily modified into this partially stag-
gered approach. Indeed, only the pressure treatment needs to be modified.

4.1. Mid-point operators

To evaluate values f 0iþ1=2 of the first derivative at the staggered nodes by a half-mesh Dx=2, a sixth-order finite difference
scheme can be expressed as
Fig. 1. Arrangement of variables in two dimensions for collocated (left) and partially staggered (right) meshes.
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af 0i�1=2 þ f 0iþ1=2 þ af 0iþ3=2 ¼ a
fiþ1 � fi

Dx
þ b

fiþ2 � fi�1

3Dx
ð20Þ
with a ¼ 9=62; a ¼ 63=62 and b ¼ 17=62. The spectral behaviour of this scheme is better than its collocated counterpart (13),
but to evaluate its overall behaviour, it is necessary to consider its combination with a mid-point interpolation procedure
given by
af I
i�1=2 þ f I

iþ1=2 þ af I
iþ3=2 ¼ a

fiþ1 þ fi

2
þ b

fiþ2 þ fi�1

2
ð21Þ
that provides an approximation of values of fiþ1=2 [30], this estimation being sixth-order accurate when a ¼ 3=10; a ¼ 3=4
and b ¼ 1=20.

4.2. Relevant Fourier transforms for periodic or symmetric boundary conditions

Assuming that f is periodic over the domain ½0; Lx�, namely
f ðxþ LxÞ ¼ f ðxÞ ð22Þ
the discrete Fourier transform may be defined as
f̂ l ¼
1
nx

Xnx

i¼1

fie�ikxxi for � nx=2 6 l 6 nx=2� 1 ð23Þ
with its inverse expression
fi ¼
Xnx=2�1

l¼�nx=2

f̂ leikxxi ð24Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

and where kx ¼ 2pl=Lx is the wave number. Equivalent shifted transforms (based on mid-point locations) are
simply obtained by the operation i! iþ 1=2 and can be computed using conventional FFT routines slightly pre- and post-
processed.

Assuming now that f is symmetric in x ¼ 0 and x ¼ Lx, namely
f ðxÞ ¼ f ð�xÞ and f ðxþ LxÞ ¼ f ðLx � xÞ ð25Þ
for x 2 ½0; Lx�, the discrete cosine Fourier transform may be defined as
f̂ l ¼
2

nx � 1
1
2

f1 þ
Xnx�1

i¼2

fi cosðkxxiÞ þ
1
2
ð�1Þlfnx

" #
for 0 6 l 6 nx � 1 ð26Þ
with its inverse expression
fi ¼
f̂ 0

2
þ
Xnx�2

l¼1

f̂ l cosðkxxiÞ þ
1
2
ð�1Þiþ1 f̂ nx�1 ð27Þ
where kx ¼ pl=Lx is the wave number. The equivalent shifted transforms differ slightly from the previous expressions with
f̂ l ¼
2

nx � 1

Xnx�1

i¼1

fiþ1=2 cosðkxxiþ1=2Þ for 0 6 l 6 nx � 2 ð28Þ
and its inverse expression
fiþ1=2 ¼
f̂ 0

2
þ
Xnx�2

l¼1

f̂ l cosðkxxiþ1=2Þ ð29Þ
In practice, these discrete cosine Fourier transforms in their collocated (26) and (27) or shifted (28) and (29) versions can be
easily computed using standard FFT routines through a relevant pre- and post-processing [41,5].

4.3. Spectral equivalence

It is easy to show (see for instance [28]) that the Fourier coefficients f̂ 0l associated with the approximation (13) are linked
to the Fourier coefficients f̂ l given by (23) by the simple spectral relation
f̂ 0l ¼ ik0xf̂ l ð30Þ
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where k0x is the modified wave number related to the actual wave number kx by
k0xDx ¼ a sinðkxDxÞ þ ðb=2Þ sinð2kxDxÞ
1þ 2a cosðkxDxÞ : ð31Þ
The same modified wave number can be introduced for symmetric and antisymmetric conditions in order to establish the
relation
f̂ 0l ¼ k0xf̂ l ð32Þ
when they are given by cosine expansions (26).
Naturally, the concept of the modified wave number still holds in the staggered formulation, the expression of k0x asso-

ciated with the scheme (20) becoming
k0xDx ¼ 2a sinðkxDx=2Þ þ ð2b=3Þ sinð3kxDx=2Þ
1þ 2a cosðkxDxÞ : ð33Þ
In the same way, the relation between coefficients f̂ I
l associated with the mid-point interpolation scheme (21) and initial

Fourier coefficients f̂ l can be easily established with
f̂ I
l ¼ TxðkxDxÞf̂ l ð34Þ
where TxðkxDxÞ is the transfer function related to the wave number kx by
TxðkxDxÞ ¼ 2a cosðkxDx=2Þ þ ð2b=3Þ cosð3kxDx=2Þ
1þ 2a cosðkxDxÞ ð35Þ
Basically, the well known principle of equivalence between multiplication in Fourier space and derivation/interpolation in
physical space is just recalled here, at the discrete level and in the framework of the approximation associated with centred
finite difference schemes (13) and (20) or (21). Let us emphasize that this equivalence is exact. Hence, for example, the com-
putation of a derivative in physical space using (20) with relevant boundary conditions (15) and (16) or (17) must lead
strictly to the same result obtained with the use of (33) in spectral space.

4.4. Extension toward homogeneous Neumann conditions

For non-periodic and non-symmetric boundary conditions, due to the well known Gibbs phenomenon (see [5] for in-
stance), the use of Fourier transforms (23), (24), (26) and (27) must be avoided to evaluate spatial derivatives using the exact
wave number. The situation is almost the same using the modified wave numbers (31) or (33) that would lead to wiggles
near the border of the computational domain. Naturally, according to the equivalence discussed in the previous section,
the direct evaluation of the first derivative using (13) or (20) combined with any set of boundary conditions (15) and
(16) or (17) would provide exactly the same border wiggles. In other words, no accurate and smooth differentiation can
be expected using periodicity or symmetrical assumptions when the function itself is neither periodic nor symmetric.

However, noting that the symmetrical condition (25) leads to
f 0ð0Þ ¼ 0 and f 0ðLxÞ ¼ 0 ð36Þ
it is tempting to use this assumption to consider functions submitted to these two boundary conditions while not ensuring
the full requirement (25). To illustrate how this intermediate treatment works and what type of error it generates, let us
consider the seventh-order polynomial function
f ðxÞ ¼ x7

7
� x6

2
þ 17x5

25
� 9x4

20
þ 274x3

1875
� 12x2

625
ð37Þ
over the domain Lx ¼ 1. This function obviously does not respect the symmetrical condition (25) while ensuring the bound-
ary conditions (36). The computation of its first derivative using (20) combined with ghost boundary conditions (16) can be
compared with its exact value
f 0ðxÞ ¼ ðx� 1Þ x� 4
5

� �
x� 3

5

� �
x� 2

5

� �
x� 1

5

� �
x ð38Þ
The resulting convergence is presented in Fig. 2 where the error corresponds to the maximum deviation between the exact value
f 0 and its approximation using (20) and (16). This error is found to be maximum at borders x ¼ 0 and Lx, as it can be expected due
to ghost boundary conditions (16). In terms of convergence, despite the use of a sixth-order scheme (20), it is easy to demon-
strate (see Appendix A) that the additional approximation associated with the border treatment (16) introduces a second-order
error in the evaluation of the values near the borders, so that the maximal error is of second-order. This behaviour can be
checked in Fig. 2 (left). As a reference, the behaviour of the error associated with the use of the standard second-order scheme
f 0iþ1=2 ¼
fiþ1 � fi

Dx
ð39Þ
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is also presented in Fig. 2. The advantage of this scheme is its very compact stencil that avoids any assumption near the bor-
der through the use of ghost boundary conditions like those given by (16). Despite this attractive property (already widely
exploited in the literature), it is interesting to observe in Fig. 2 that this second-order scheme is clearly less accurate than its
sixth-order counterpart (20) combined with ghost boundary conditions (16). Outside from the border neighbourhood, a
sixth-order order convergence can even be recovered with this latter combination (20) and (16) as shown by Fig. 2 (right).
To have a better idea of the errors introduced by these two schemes, their local error (as a function of x) is presented in Fig. 3
for nx ¼ 32 mesh nodes. For the scheme (20) combined with ghost boundary conditions (16), the occurrence of maximal er-
rors near the borders is clearly exhibited while being significantly reduced compared with the error associated with the stan-
dard scheme (39). Note that, for the present seventh order polynomial function, the error introduced by the second-order
scheme (39) is scaled on the third derivative f 000 leading to the specific curve presented in Fig. 3 where no singular behaviour
can be observed near the borders. For the sixth-order scheme (20) combined with ghost boundary conditions (16), the error
is also found to be dependent on x while exhibiting a slight Gibbs effect, a behaviour that can be accepted regarding the low
error level.

To summarize, this very simple test based on the function f (37) shows that the sixth-order scheme (20) combined with
ghost boundary conditions (16) can provide an accurate estimation of the first derivative.2 Despite the formal second-order
of this combination, the accuracy obtained is significantly improved compared with the standard second-order scheme (39).
However, the condition required to obtain such a favourable behaviour is that the function submitted to the differentiation
2 Note that this point has been illustrated using only staggered schemes, but similar conclusions can be drawn for collocated schemes, except for the
standard second-order scheme f 0i ¼ ðfiþ1 � fi�1Þ=2Dx that cannot avoid completely ghost boundary conditions (16) so that border errors are generated contrary
to the standard second-order staggered scheme (39).
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must verify the boundary conditions (36).3 The drawback of ghost boundary conditions (16) is that they limit any scheme to
the second-order accuracy, but their important advantage is that they allow the discretization to remain homogeneous in the
whole computational domain. Then, it is possible to define exactly and easily the differentiation in spectral space. Hence, as for
periodic or free-slip boundary conditions, the use of compact sixth-order scheme (13) or (20) combined with the ghost condi-
tions (16) in physical space remains strictly equivalent to the multiplication by the modified wave number (31) or (33) in spec-
tral space defined using the cosine Fourier transforms (26) and (27) or (28) and (29), respectively.

For the incompressible Navier–Stokes equations, the restriction (36) is found to be well adapted to a numerical treatment
where homogeneous Neumann conditions are applied on the pressure field in the present fractional step method (see Sec-
tion 2.3). In this work, this property is exploited for the full treatment of the pressure that can be defined in the physical or
spectral space depending on the stage of the solving. The overall pressure treatment procedure in the present numerical code
is presented in the next section.

4.5. Numerical procedure of the pressure treatment

To simplify the writing, a generic discrete 3D Fourier transform can be defined as
3 For
resultin

4 For
and kz ¼
p̂lmn ¼
1

nxnynz

X
i

X
j

X
k

pijkWxðkxxiÞWyðkyyjÞWzðkzzkÞ ð40Þ
with its inverse expression
pijk ¼
X

l

X
m

X
n

p̂lmnWxð�kxxiÞWyð�kyyjÞWzð�kzzkÞ ð41Þ
where the sums, the base functions ðWx;Wy;WzÞ and the wave numbers ðkx; ky; kzÞ can correspond to standard FFT (for peri-
odic boundary conditions) or cosine FFT (for free-slip or u-Dirichlet/p-Neumann boundary conditions) in their collocated
(23), (24), (26) and (27) or shifted versions (28) and (29). In practice, the 3D direct (40) and inverse (41) transforms can
be easily performed with any efficient FFT routines available in scientific Fortran or C libraries for instance. Consequently,
this stage in the implementation of the present method to solve the Poisson equation does not require significant numerical
developments.

The first stage in the solving of the Poisson (11) consists in the computation of its right hand side. In order to preserve
compatibility between the discrete differentiation operators in physical and spectral spaces, the calculation of
$:½ð1� eÞu��� in (11) must be done with collocated (13) or staggered (20) schemes preserving the set of boundary conditions
considered. Note that for the partially staggered case, the divergence is computed on pressure nodes represented by empty
circles in Fig. 1.

Having performed the relevant Fourier transform (40) to D ¼ $ � ½ð1� eÞu���, the solving of the Poisson equation consists
in a single division of each Fourier mode bDlmn by a factor Flmn with
~̂pkþ1
lmn ¼

bDlmn

Flmn
ð42Þ
The expression of this factor depends on the mesh configuration. For a fully collocated configuration, it takes the following
form
Flmn ¼ � k02x þ k02y þ k02z
� �

ckDt ð43Þ
where ðk0x; k
0
y; k

0
zÞ are modified wave numbers defined in (31). In the partially staggered approach, the factor Flmn must take

the mid-point interpolation into account through the use of the transfer function (35) with the following form
Flmn ¼ �½ðk0xTyTzÞ2 þ ðk0yTxTzÞ2 þ ðk0zTxTyÞ2�ckDt ð44Þ
For the collocated case, the expression of (43) leads to a significant number of Fourier modes ðkx; ky; kzÞ where Flmn is zero in
the expression (42). These specific modes correspond to the well known singular modes of pressure for which
k02x þ k02y þ k02z ¼ 0. For a given direction, x for instance, the modified wave number (31) of a collocated scheme can be zero
for kx ¼ 0 but also for kxDx ¼ p, the so-called cutoff wave number. Consequently, in addition to the expected singular mode
ðkx; ky; kzÞ ¼ ð0;0;0Þ that corresponds to an undefined constant of the pressure for an incompressible flow, seven singular
modes can be identified in 3D4 due to the simultaneous cancellation of the three modified wave number
ðk0x; k

0
y; k

0
zÞ ¼ ð0;0;0Þ. Note that in the context of purely spectral methods, it can be shown that these modes can only be avoided

through the use of a pressure mesh based on N � 2 nodes when the velocity mesh is based on N nodes in each spatial
more general functions, it can be shown that the standard second-order (39) is clearly more accurate by avoiding the border assumptions (16) and their
g strong Gibbs phenomena.
simplicity, only the modes with positive wave numbers are counted, the other ones being deduced by symmetry with respect to the plane kx ¼ 0; ky ¼ 0

0 while taking Hermicity into account.
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discretization [8]. When the Poisson equation is solved in physical space, these singular modes can affect significantly the effi-
ciency of the solver while creating non-physical oscillations on the pressure field. Here, because the Poisson equation is ex-
pressed in spectral space, singular modes can be easily eliminated by simply skipping all the modes where k02x þ k02y þ k02z ¼ 0.
However, as it will be observed in Section 7.3, in the spectral region near-singular conditions k02x þ k02y þ k02z 	 0, the division
by Flmn tends to amplify the corresponding modes so that pressure oscillations can appear.

For the partially staggered case, the situation is less critical because the modified wave number (33) is zero only for kx ¼ 0
while being maximal for kxDx ¼ p (as the actual wave number). However, four additional singular modes can be identified
due to the cancellation of the transfer functions Tx; Ty and Tz for kxDx ¼ p; kyDy ¼ p and kzDz ¼ p, respectively. These singu-
lar modes correspond to spurious oscillations with a zigzag pattern in oblique directions with respect to the Cartesian mesh.
In Section 7.3, it will be shown that in the neighbourhood of singular conditions where k0xTyTz

� �2 þ k0yTxTz

� �2
þ k0zTxTy
� �2 	 0,

the resulting amplification of the corresponding pressure modes does not create significant wiggles contrary to the fully col-
located case.

In order to perform the correction (5), the most efficient method is to compute the pressure in physical space using the
inverse Fourier transform (41). Then, the pressure gradients $~pkþ1 can be calculated using a collocated (13) or a staggered
(20) scheme depending on the type of mesh used. After this correction, depending on the use or not of an IBM, the divergence
free conditions (8) or (12) can be ensured up to the machine accuracy, the strict equivalence between all the discrete oper-
ators (in physical as well as in spectral space) being preserved throughout the full pressure treatment.
5. Extension toward a stretched mesh in one direction

At this stage, the overall procedure for the discretization of the pressure is valid only for a regular mesh in the three spa-
tial directions. This constraint can be overcome through the use of a mapping easily usable in physical space, the basic prin-
ciple being based on an equally spaced mesh in the mapped space. However, expressed in spectral space, a general mapping
can introduce a serious difficulty in terms of algorithm and computational cost. Indeed, the main problem is linked to the use
of a product in physical space that corresponds to a convolution product in spectral space. For this reason, the spectral equiv-
alence discussed in Section 4.3 needs to be reconsidered. For instance, the simple solving of the Poisson equation based only
on a single division in spectral space is lost. However, following the stretching technique introduced by [4] and extended by
[3], a slight modification of the Poisson solver is proposed, based on a specific function mapping and expressed using only
few Fourier modes. Thus, the spectral and non-iterative nature of the pressure treatment can be preserved without signif-
icant loss of accuracy.

To simply explain this method, the general analysis of the mesh technique is restricted to a one-dimensional problem. Let
y be the physical coordinate5 and s the computational coordinate introduced by
5 Onl
of stret

6 The
y ¼ hðsÞ; 0 6 s 6 1; 0 6 y 6 Ly ð45Þ
where hðsÞ is the mapping from the equally spaced coordinate s to the stretched spaced coordinate y. The derivatives with
respect to y can be estimated using the chain rule. The first derivative can be expressed as
@f
@y
¼ @f
@s

ds
dy
¼ 1

h0
@f
@s

ð46Þ
and the second derivative as
@2f
@y2 ¼

@2f
@s2

ds
dy

� �2

þ @f
@s

d2s

dy2 ¼
1

h02
@2f
@s2 �

h00

h0
3

@f
@s

ð47Þ
Expressed in physical space, these rules are very easy to implement for schemes like (13), (14) and (20) where the finite dif-
ferences are simply performed on the regular coordinate s (instead of x). The main problem comes from the treatment of the
Poisson equation proposed in this study that requires to define similar operations in spectral space. Since ensuring the diver-
gence free condition, the Laplacian in Poisson equation (11) has to be discretized using an iterated first derivative operator,
based on (45). In practice, the multiplication 1

h0
@f
@s has to be expressed in spectral space. Assuming than f can be represented by

one of the discrete Fourier transforms ((23) and (24), (26) and (27), (28) and (29)) where the regular coordinate is s instead of
x, the point is to define appropriately the Fourier representation of the metric 1=h0. For clarity, let us consider the periodic
case6 where f can be expressed as
fi ¼
Xny=2�1

m¼�ny=2

f̂ meikmsi ð48Þ
y stretched meshes in y will be considered in this paper as well as in flow configurations considered in the validation section, but present methodology
ching remains valid for any single direction whatever the type of boundary conditions.

present description of the method can be adapted straightforwardly to symmetric or/and shifted Fourier transforms.
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the metric 1=h0 as
1
h0i
¼

Xny=2�1

m¼�ny=2

âmeikmsi ð49Þ
and the y-derivative of f by
@f
@y

				
i

¼
Xny=2�1

m¼�ny=2

b@f
@y

					
m

eikmsi ð50Þ
where km ¼ 2pm is the wave number associated with the uniform distribution of ny points si ¼ ði� 1Þ=ny on the regular coor-
dinate s.

Expressed in spectral space, the product
@f
@y

				
i

¼ 1
h0i

@f
@s

				
i

ð51Þ
leads to the convolution product
b@f
@y

					
m

¼
Xny=2�1

p¼�ny=2

âp

b@f
@s

					
m�p

for � ny=2 6 m 6 ny=2� 1 ð52Þ
requiring to perform n2
y multiplications. Then, in terms of computational cost, the use of a such mapping appears to be very

penalizing. Moreover, the convolution product (52) does not mimic exactly the multiplication in physical space (51) due to
the truncation of the modes outside from the range �ny=2 < m < ny=2� 1. This truncation eliminates the aliasing errors, but
because they are present when the operation is performed in physical space as (51), the physical/spectral equivalence is lost.
For this specific point, it would be possible to mimic exactly the aliasing error in spectral space (through a relevant ‘‘contam-
ination” of corresponding modes) but with significant damages on the result depending on the decay of the Fourier coeffi-
cients f̂ m and âm. An illustration of aliasing introduction in spectral space (to preserve compatibility between derivation in
physical and spectral space) is presented in Appendix B.

Following the technique introduced by [4], a metric, expressed with only three Fourier modes in spectral space, is pro-
posed here with
1
h0
¼ 1

Ly

a
p
þ 1

pb
sin2ðpðcsþ dÞÞ


 �
¼ 1

Ly

a
p
þ 1

2pb
1� ei2pðcsþdÞ þ e�i2pðcsþdÞ

2

� 
 �
ð53Þ
so that the mapping (45) can be written as
h ¼ Ly
ffiffiffi
b
p

c
ffiffiffi
a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

abþ 1
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abþ 1

p
tanðpðcsþ dÞÞffiffiffi
a
p ffiffiffi

b
p

" #(
þp H s� 1� 2d

2c

� �
þH s� 3� 2d

2c

� �� 
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abþ 1

p
tanðpdÞffiffiffi

a
p ffiffiffi

b
p

" #)
ð54Þ
where H is the Heaviside step function. The present mapping is a generalization of those proposed by [4] and [3]. It preserves
the accuracy while avoiding the expensive computation of a full convolution and ensuring the strict physical/spectral equiv-
alence. When a ¼ 0; c ¼ 1 and d ¼ 0, Eq. (54) degenerates to Cain et al.’s [4] mapping function that leads to a fine mesh in the
centre of an infinite domain Ly ¼ 1. For a – 0, c ¼ 1 and d ¼ 0, present function corresponds to the one of [3] that allows a
central mesh refinement in a finite domain. Using c ¼ 1 and d ¼ 1=2, the concentration of mesh nodes is performed near the
boundaries of the domain at y ¼ 0 and Ly. Finally, the choice c ¼ 1=2 and d ¼ 1=2 leads to mesh refinement only at one
boundary y ¼ 0. Note that this latter case is not compatible with periodic boundary conditions because 1=h0 is not periodic
over Ly. Consequently, when c ¼ 1=2, only cosine Fourier transforms (26)–(29) can be used (for present code, Neumann con-
ditions for the pressure and free-slip or Dirichlet conditions for the velocity), whereas for the other cases, both periodic and
Neumann conditions can be considered. Note that a needs to be adjusted depending on the set of parameters ðb; c; dÞ used to

ensure hð1Þ ¼ Ly, with for instance a ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4b2p2
p

2b when c ¼ 1.

By identification between the expression (53) and its Fourier expansion (49), it is easy to deduce that only three coeffi-
cients of the metric are non-zero with
â0 ¼
1
Ly

a
p
þ 1

2pb

� �
; â1 ¼ â�1 ¼ �

1
Ly

cos 2pd
4pb

� �
ð55Þ
for c ¼ 1 and d ¼ 0 or 1=2 (the case c ¼ 1=2 needs to consider cosine expansion as already stated). The main advantage of this
very compact expression in spectral space is that the convolution product of the metric by the first derivative with respect to
the regular coordinate s requires only 3ny multiplications with
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b@f
@y

					
m

¼
X1

p¼�1

âp

b@f
@s

					
m�p

ð56Þ
Using the modified wave numbers k0m associated with km through a relation like (31) or (33) based on the computational
coordinate s instead of x, the same relation including the differentiation in s can be written
b@f

@y

					
m

¼ i
X1

p¼�1

âp k0m�pf̂ m�p ð57Þ
so the resulting full discretization leads formally to
f̂ 0 ¼ Af̂ ð58Þ	

where f̂ and f̂ 0 are ny vectors of components f̂ m and

b@f
@y

			
m

, respectively and A a ny � ny tridiagonal matrix of components
0 0 0
Am;m�1 ¼ iâ1km�1; Am;m ¼ iâ0km; Am;mþ1 ¼ iâ�1kmþ1 ð59Þ
This operation, applied once again to estimate the second derivative of f, leads to
f̂ 00 ¼ Bf̂ ð60Þ	

where f̂ 00 is a ny vector of components

c
@2 f
@y@y

			
m

and B ¼ AA a ny � ny pentadiagonal matrix of components
0 0
bm;m�2 ¼ �â2

1km�1km�2

bm;m�1 ¼ �â0â1k0m�1 k0m þ k0m�1

� �
bm;m ¼ �â2

0k0m
2 � â1â�1k0m k0mþ1 þ k0m�1

� �
bm;mþ1 ¼ �â0â�1k0mþ1 k0m þ k0mþ1

� �
bm;mþ2 ¼ �â2

�1k0mþ1k0mþ2 ð61Þ
For the solving of the Poisson equation (using 3D Fourier transforms (40) and (41) where y needs to be substituted by s for
the present y-stretched approach), the counterpart of the integration scheme (42) becomes
~̂pkþ1
ln ¼ B�1 bDln ð62Þ
where ~̂pkþ1
ln and bDln are ny vectors of components ~̂pkþ1

lmn and D̂lmn, respectively and B a ny � ny pentadiagonal matrix of
components
bm;m�2 ¼ �â2
1k0m�1k0m�2

bm;m�1 ¼ �â0â1k0m�1ðk
0
m þ k0m�1Þ

bm;m ¼ � k0x þ k0z
� �2 � â2

0k0m
2 � â1â�1k0m k0mþ1 þ k0m�1

� �
bm;mþ1 ¼ �â0â�1k0mþ1 k0m þ k0mþ1

� �
bm;mþ2 ¼ �â2

�1k0mþ1k0mþ2 ð63Þ
for the fully collocated case. For the partially staggered case, the equivalent matrix takes the form
bm;m�2 ¼ �â2
1T2

x T2
z k0m�1k0m�2

bm;m�1 ¼ �â0â1T2
x T2

z k0m�1 k0m þ k0m�1

� �
bm;m ¼ �ðk0xTyTzÞ2 � ðk0zTyTzÞ2 � â2

0T2
x T2

z k0m
2 � â1â�1T2

x T2
z k0m k0mþ1 þ k0m�1

� �
bm;mþ1 ¼ �â0â�1T2

x T2
z k0mþ1 k0m þ k0mþ1

� �
bm;mþ2 ¼ �â2

�1T2
x T2

z k0mþ1k0mþ2 ð64Þ
Naturally, these two matrices are diagonal for a regular y-coordinate (with a1 ¼ a�1 ¼ 0) so that the simplified expressions
(43) and (44) can be recovered. In the other cases, the computation of pressure nodes ~̂pkþ1

ln requires to invert nx � nz linear
systems based on ny � ny pentadiagonal matrices. The corresponding computational cost is, as for the regular case, propor-
tional to nx � ny � nz so that the solver Poisson can be direct without any iterative process.

Finally, note that some of the coefficients of A and B given by (59), (61), (63) and (64) need to be slightly modified near the
borders of the matrices for two reasons. First, any coefficient with subscript outside from the range �ny=2 < m < ny � 1 has
to be set to zero due to the truncation of present Fourier series. When this truncation is performed, the resulting matrices A
and B are free from any aliasing error. Defined in spectral space, the corresponding operations are aliased. In consequence,
based on spectral de-aliased operators, the physical/spectral equivalence is not exactly satisfied. As already discussed in this
section, this equivalence can be re-established through the relevant contamination of the coefficients of A and B in order to
mimic exactly the aliasing produced naturally in physical space by the product (51). The resulting modifications concern
only the first and last lines of the matrices A and B due to the use of present metric (53) that limits drastically the aliasing
process. An example of aliasing implementation through the modification of the matrix A can be found in Appendix B.
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6. Concluding remarks and computational cost

As the strict equivalence between the spatial discretization in physical and spectral spaces is always maintained, the pres-
ent technique allows the verification of the incompressibility condition up to the machine accuracy. In practice, this property
seems to be important in terms of stability. If the matching between the physical and spectral discretization is not strictly
satisfied, the resulting residual divergence is found to increase during the calculation whatever its initial level. For instance,
the use of a non-aliased operator in spectral space for the stretched case leads to a very low but remaining divergence7 that
tends to accumulate during the simulation and finally leads to a strong numerical instability at small scales.

In terms of computational cost, the direct inversion of the Poisson equation needs to perform one direct and one inverse
3D FFT. For a fully regular mesh in the three spatial directions, these two FFT are the main part of the computational cost of
the Poisson stage which is about 10% of the total treatment of the Navier–Stokes equations. For meshes with one stretching
direction, the cost of the incompressibility treatment increases but remains about 15% of the overall cost for a given simu-
lation. Such relative costs can be considered to be satisfactory regarding the use of high-order schemes.

Naturally, the Fourier formalism suffers from drawbacks linked to implicit assumptions about the boundary conditions.
For periodic or free-slip boundary conditions, the use of Fourier transforms (23) or (26) for the pressure is perfectly adapted
and does not introduce additional errors. On the contrary, for no-slip or open (i.e. Dirichlet for velocity) boundary conditions,
the development of the pressure in cosine expansion like (26) needs to assume that homogeneous Neumann conditions are
verified. This implicit assumption introduces an error that is only second-order accurate in space. In the following results, the
interest of high-order schemes in such a limited framework will be discussed by analysing validation results in various com-
putational configurations.
7. Validation and results

In this section, six computational configurations are considered, with different sets of boundary conditions and different
flow motions. In the Section 7.1, periodic or free-slip conditions are used for preliminary verifications in 2D problems. Then,
the ability of the present code to treat satisfactory no-slip boundary conditions (despite the use of a modified spectral ap-
proach for the pressure) is evaluated in Section 7.2 for a stationary flow. Note that in the same section, the error introduced
by the IBM is exhibited. Furthermore, a combination of present numerical methods with IBM is also used in Section 7.3
where the simulation of the simple steady flow over a circular cylinder emphasizes the interest of a partially staggered ap-
proach. Finally, DNS of a transitional channel flow, a vortex-dipole rebound near a wall and a turbulent channel flow are pre-
sented in Sections 7.4, 7.5 and 7.6, respectively, in order to compare the efficiency of sixth-order compact schemes with
respect to conventional second-order schemes.

To better understand the following comparisons and conclusions, it could be useful to clarify what terms like sixth-order
schemes and collocated/staggered approaches will refer to. A numerical code based on sixth-order schemes means that (i)
convective and viscous terms are discretized using (13) and (14) (ii) pressure term is discretized using the same scheme for a
collocated approach or using mid-point operators (20) and (21) for a partially staggered approach. In addition, for Dirichlet
conditions on the velocity, near-border formulations (18) and (19) are used only for the computation of convective and vis-
cous terms.

In preliminary calculations, a partially staggered second-order version of the present code has been tested. For all the fol-
lowing validation tests, comparisons between the partially second-and sixth-order versions have clearly shown the improve-
ment offered by the use of compact sixth-order schemes. However, this spectacular benefit has been found somewhat
artificial because it was partly due to the poor accuracy of a second-order approach based on a partially staggered mesh.
To our knowledge, the best strategy to use second-order finite schemes is based on a fully staggered arrangement of the
mesh as initially proposed by [13] to eliminate all singular modes in the pressure field. The efficiency and accuracy of this
approach, known as the MAC method, has been clearly shown by [32] for the DNS of turbulent flows. In consequence, to
show the interest of the present partially staggered sixth-order approach, comparisons with a fully staggered second-order
code will be presented for several validation tests presented in this section. Note that in practice, the numerical code avail-
able in the book of [32] has been used. A version adapted to the flow configurations considered for comparisons with present
code can be found on the CD that comes with the book. It is important to note that this version has been directly used to
produce second-order results without performing code development while checking the consistency of these present results
with those reported in [32] for the turbulent channel flow.

7.1. Taylor-Green vortices

In a square domain Lx ¼ Ly ¼ 1 with periodic or free-slip conditions at the boundaries x ¼ 0; x ¼ 1; y ¼ 0 and y ¼ 1, starting
from initial conditions
7 Typically, the reduction of the divergence is more than ten order of magnitude.
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uðx; y;0Þ ¼ sin 2pxð Þ cosð2pyÞ
vðx; y; 0Þ ¼ � cosð2pxÞ sinð2pyÞ
the analytic solution of the incompressible Navier–Stokes (1) and (2) equations without any forcing (f ¼ 0) is given by
uðx; y; tÞ ¼ sinð2pxÞ cosð2pyÞe�4p2mt

vðx; y; tÞ ¼ � cosð2pxÞ sinð2pyÞe�4p2mt ð65Þ
In order to confirm the perfect compatibility between the spectral Poisson solver presented here and the rest of the discret-
ization defined in physical space, the exact solution (65) was compared with its approximation for this benchmark. The evo-
lution of the flow is simulated from t0 ¼ 0 to t1 ¼ 0:5, using a very small time step Dt ¼ 0:0005 in such a way that time
discretization errors can be considered as negligible with respect to the spatial ones. The square computational domain is
discretized on nx � ny mesh nodes with nx ¼ ny. The Reynolds number defined by Re ¼ 1=m is equal to 1000.

The error is considered through the standard deviation of the computed velocity component uc from its exact solution ue

defined as
Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nx

1
ny

Xnx

i¼1

Xny

j¼1

ðucðxi; yj; t1Þ � ueðxi; yj; t1ÞÞ2
vuut ð66Þ
with xi ¼ ði� 1Þ=nx and yj ¼ ðj� 1Þ=ny.
For each case, four calculations were performed using 8, 16, 32 and 64 mesh nodes in each direction. The error decrease is

presented in Fig. 4 for four cases combining regular/stretched and collocated/staggered meshes.
It can be clearly seen that for each case, the error follows a decrease corresponding to a sixth-order accuracy as expected

when compact schemes (13) and (14) or (20) are used. For the present solution (65) based on sine and cosine functions,
stretched meshes lead logically to a significant increase of the error, the regular mesh being optimal whereas stretching
introduces local (in unrefined regions) and aliasing errors as already discussed in Section 5. However, the use of present met-
ric allows the preservation of the sixth-order convergence as shown in Fig. 4. Finally, it is worth noting that no significant
difference can be observed between collocated or partially staggered approaches, both mesh organisations leading virtually
to the same accuracy.

7.2. Burggraf flow

The Burggraf flow corresponds to a steady recirculating flow submitted to a forcing in a square cavity Lx ¼ Ly ¼ 1. The
velocity boundary conditions are no-slip conditions with
uðx;0Þ ¼ uð0; yÞ ¼ uð1; yÞ ¼ 0 ð67Þ
while at the top boundary, a Dirichlet condition is applied
uðx;1Þ ¼ 16ðx4 � 2x3 þ x2Þ ð68Þ
This set of boundary conditions avoids the presence of discontinuities at the top corners of the cavity. If a forcing of the form
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f ¼ � 8
Re



½24g þ 2g00h00 þ gð4Þh��64

g02

2
ðhh000 � h0h00Þ � hh0ðg0g000 � g002Þ

� �
ex ð69Þ
with
gðxÞ ¼ x5

5
� x4

2
þ x3

3
; hðyÞ ¼ y4 � y2 ð70Þ
is used in equations (1), the exact solution is (see for instance [37])
uðx; yÞ ¼ 8ðx4 � 2x3 þ x2Þð4y3 � 2yÞ
vðx; yÞ ¼ �8ð4x3 � 6x2 þ 2xÞðy4 � y2Þ ð71Þ
The streamlines illustrating this cavity flow are plotted in Fig. 5. This benchmark problem allows us to evaluate the behav-
iour of our code when only boundary conditions of Dirichlet type are applied on the velocity field. The procedure used in the
previous section is followed here and five calculations at Re ¼ 10 are performed to investigate the behaviour of the error esti-
mated using (66).

For this flow, Fig. 5 shows clearly that only a second-order accuracy is obtained despite the use of sixth-order schemes.8

Such behaviour can be expected if the implicit assumption about the pressure boundary conditions is taken into account. In
fact, as already stated in Section 4.4 (see also Appendix A), the spectral treatment of the pressure through a cosine expansion
(26) introduces a second-order error that is logically reported on the velocity field. For the present flow dominated by wall
effects, this assumption inhibits by construction the global accuracy of the solution to second-order. Moreover, the compar-
ison of the solution based on a second-order differentiation for the pressure (while keeping the discretization based on sixth-
order compact schemes for the convective and viscous terms) with its counterpart obtained using only sixth-order compact
schemes (except near the boundary) reveals that the former is more accurate than the latter. This rather unexpected result
can be explained by recalling that the use of the standard second-order scheme (39) does not require ghost conditions like
(15) or (16) as already stated in Section 4.4. For the present cavity flow, the use of ghost conditions, unavoidable when sixth-
order schemes are used, seems to dominate the overall error by taking a slight advantage to the standard scheme (39) based
on a minimum stencil. In first conclusion, for this laminar and steady cavity flow, the use of quasi-spectral schemes com-
bined with ghost conditions for the pressure appears to be a useless strategy with no improvement of the convergence order
and even a slight degradation of the overall accuracy. This conclusion will have to be reconsidered in next sections where less
formal tests are performed in the context of numerical prediction of near-wall transition and turbulence.

Finally, Fig. 5 reports the convergence behaviour observed when the velocity Dirichlet conditions (67) are imposed with
an IBM combined with sixth-order differentiation. In present flow configuration, the forcing field f corresponds to the
expression (69) in the fluid region ðe ¼ 0Þ whereas in the immersed region ðe ¼ 1Þ, it is calibrated to ensure the no-slip
boundary conditions (67) via the expression (10). This test shows that a second-order accuracy can be obtained with an addi-
tional slight increase of the error that can be accepted regarding the crude approximation of no-slip conditions allowed by
clarity, only the results obtained with a regular and staggered mesh are presented in Fig. 5. Similar second-order convergence is observed using a
ed mesh but with an increase of the error of about 100%, showing that the use of a partially staggered mesh leads to a drastic improvement of the

accuracy in presence of no-slip walls.
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IBM. Note in particular that the pressure is not at all constrained in IBM since only the velocity is forced in the immersed
region without any care about the pressure boundary condition (see the Appendix of [9] for this point). The behaviour of
the pressure for a less simple flow configuration (where the mesh does not fit the immersed boundary region) is investigated
in the following section.

7.3. Steady flow around a circular cylinder

In this section, the ability of present code combined with an IBM is tested to provide relevant physical predictions. The
forcing field f is again calibrated in order to model the presence of a circular cylinder by the prescription of a target velocity
u0 ensuring no-slip boundary conditions and regularity at its surface (see Section 2.4 and [34,33] for more details). A DNS of
a steady wake flow is performed, created by a constant velocity U flow over a circular cylinder of diameter D at
Re ¼ UD=m ¼ 40. The computational domain ðLx; LyÞ ¼ ð20D;12DÞ is discretized on nx � nz ¼ 361� 217 mesh nodes equally
spaced. The streamwise location of the cylinder is xcyl ¼ 5D. At y ¼ �Ly=2, free-slip boundary conditions are assumed. In the
streamwise direction, inflow/outflow boundary conditions are imposed as velocity Dirichlet conditions. At the inlet,
uð0; y; tÞ ¼ U ex is prescribed while at the outlet, the imposed exit velocity uðLx; y; tÞ is deduced from the simplified
equation
Fi
@u
@t

				
x¼Lx

þ U
@u
@x

				
x¼Lx

¼ 0 ð72Þ
As for a non-slip boundary condition, a homogeneous Neumann condition is assumed at x ¼ 0 and x ¼ Lx so that pressure can
be defined in spectral space through a cosine expansion. In consequence, the full spectral treatment of the pressure proposed
in Section 4 can be used for the present combination of free-slip (in y) and inflow/outflow (in x) boundary conditions.

To investigate the effect of the pressure mesh staggering, only two calculations are performed, based on sixth-order com-
pact schemes used in their collocated (13) and staggered (20) versions for the pressure. By comparison with reference results
[43], the main characteristic length scales are satisfactory recovered for both calculations. For instance, the length of the
wake bubble is well predicted with a value of 2:30D ð�0:03DÞ in good agreement with [43] who found Lw ¼ 2:27 D. A more
extensive investigation of the velocity or vorticity fields does not allow a clear distinction between the two calculations
based on a collocated or a partially staggered approach. However, some discrepancies are found for the pressure field with
oscillations for the collocative approach (Fig. 6) whereas the partial staggered approach seems to cancel efficiently this phe-
nomenon. The zigzag pattern of the collocated pressure does not correspond, strictly speaking, to pressure modes because
these singular modes are easily cancelled in spectral space during the stage (42) of the Poisson solving. However, as already
discussed in Section 4.5, pressure modes near the singular conditions can be highly amplified by the division performed in
(42) so that pressure wiggles can be created. Here, this phenomenon is not observed for the partially staggered mesh where
singular modes are, by construction, less numerous than in the collocated case while corresponding to oblique waves of very
small length. For the collocated case, Fig. 6 reveals that small waves aligned with the mesh are excited, these non-physical
oscillations corresponding to ‘‘almost singular pressure modes”. Note that this unrealistic behaviour of the collocated
pressure is only observed for calculations using IBM. Indeed, the use of IBM tends to excite pressure oscillations in the
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neighbourhood of the immersed boundary because in this region, the velocity field is not as smooth as in the core fluid zone.
This residual non-regularity is then strongly amplified by the division in (42) for near-singular pressure modes for which the
factor Flmn tends to be very small. The relation (42) allows the straightforward identification of these almost singular modes,
but naturally, similar effects would be recovered if the pressure solving was performed in physical space, with additional
difficulties associated with the treatment of actual singular modes that cannot be easily skipped in this case.

To conclude this section, the potential of IBM to excite unrealistic pressure wiggles leads us to renounce to a fully collo-
cated mesh. A partially staggered mesh seems to be able to avoid this phenomenon without introducing any additional dif-
ficulties in terms of code development or computational cost. More precisely, in physical space, the cost of a staggered
scheme (20) instead of a collocated one (13) is equivalent. In spectral space, the same can be said for the solving of (42) using
(43) or (44). The single significant additional computational effort is related to the use of mid-point interpolation scheme
(21) for the computation of the term $ � ½ð1� eÞu��� in (11), with a resulting increase of the cost of the incompressibility
treatment less than 1%. Consequently, our recommendation is to always prefer partially staggered meshes that do not exhibit
significant drawbacks compared with collocated meshes while offering a more realistic pressure prediction. For this reason,
only results obtained with a partially staggered sixth-order approach will be presented for the remaining benchmark
problems.

7.4. Transitional channel flow

In this section, as well as in the remaining ones, comparisons between quantitative predictions obtained from present
partially staggered code and those provided by a more conventional code based on second-order schemes and a fully stag-
gered approach will be shown. First, the temporal development of an unstable wave in a plane channel is considered. For this
purpose, an initial random perturbation is superimposed on a Poiseuille profile
9 Usi
uðyÞ ¼ 1� y2

h2

� �
Uc ex ð73Þ
where h is the half-width of the channel while Uc is the centreline velocity, x; y and z being the longitudinal, normal to the
wall and spanwise directions, respectively. By considering a supercritical Reynolds number Re ¼ Uch=m ¼ 8000 and a very
low amplitude of the perturbation u0 	 10�10Uc , it can be expected that the most amplified Tollmien–Schlichting wave (pre-
dicted by the linear stability) dominates all the other waves through an exponential increase during the time. Because this
most amplified wave has no z-dependence, present calculations are only 2D. The computational domain matches exactly the
expected most amplified mode of stability with Lx � Ly ¼ 2ph� 2h discretized using nx � ny mesh nodes. A refined mesh near
the walls could be slightly less computationally expensive, but because present tests are cheap, a regular mesh is used in
both directions with no stretching error. Calculations are performed using a very small time step Dt ¼ 0:0075 h=Uc so that
time errors are always negligible with respect to those associated with the spatial discretization. Periodic boundary condi-
tions are used in x-direction while no-slip boundary conditions are imposed at the two walls y ¼ �h.

As reported by Zang and Krist [44], the amplification rate xi ¼ 0:0026649 of the most unstable Tollmien–Schlichting wave
can be recovered with a 6-digit agreement using ny ¼ 64 Chebyshev modes in a purely spectral method. Note that the present
problem is known to be numerically stringent. The computation of the temporal evolution of a linearly unstable perturbation for
viscous stability is known to require the use of high-order methods in order to capture satisfactory the balance between the
convective and viscous terms in Navier–Stokes equations. In this context, purely spectral methods allowing the exponential
convergence can be considered as optimal. Here, because only second-order can be formally achieved, our comparisons are re-
stricted to the prediction of the amplification rate with 4 characteristic digits xi ¼ 0:0026 with a relative error less than 2%. For
the second-order version of present code of [32], it should be noted that ny ¼ 391 mesh nodes are required to obtain this accu-
racy, while ny ¼ 201 are necessary if sixth-order code is used. This observation shows that a clear improvement of the accuracy
can be obtained if sixth-order schemes are used, although the use of ghost conditions implies that both codes are formally
second-order accurate. Note that a simulation of the Tollmien–Schlichting wave using ny ¼ 201 mesh nodes with the fully
staggered second-order code leads to an amplification rate significantly underestimated with xi ¼ 0:0024.

Concerning the discretization in x, the 4-digit accuracy can be achieved using nx ¼ 32 with the fully staggered second-or-
der code against nx ¼ 12 with the present partially staggered sixth-order code. This difference can be expected because in
this case, due to the use of periodic boundary conditions, the formal sixth-order accuracy is preserved. Combining the pres-
ent requirements in x- and y-directions, it can be concluded that nx � ny ¼ 12� 201 mesh nodes are necessary to satisfactory
compute the evolution of a Tollmien–Schlichting wave using the present sixth-order code, while about 5 times more mesh
nodes need to be used to have an equivalent accuracy with the second-order code. This conclusion could appear contradic-
tory to the numerical tests in the cavity presented in Section 7.2 where second-order schemes were found to lead to slightly
more accurate results. However, this previous test corresponds to a stationary flow where the smooth character of the solu-
tion tends to emphasize the errors associated with the discretization of the pressure near the boundaries. Such a configura-
tion seems to penalize a high-order approach requiring ghost conditions. In the present unsteady problem, the sensitivity of
ng the normalisation h ¼ 1 and Uc ¼ 1.



Fig. 7.Vortici0:5;0:6;0:8h=U. Lusing 2048�1024 Fourier–Chebyshev modes. Centre: present partially staggered sixth-order code using 256�513 mesh nodes. Right: fully staggered
second-order code of [32]using 256�513 mesh nodes.
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the solution to numerical errors seems to be of different nature, the ‘‘local” sixth-order accuracy being found to be very
attractive for the accuracy at marginal resolution.

7.5. Vortex-dipole rebound from a wall

As an intermediate unsteady problem between the prediction of a linearly unstable wave and the description of fully
developed turbulence in a channel flow (next section), the dynamics of a vortex-dipole rebound is considered here as a rel-
evant benchmark problem. The main features of the successive events associated with the dipole rebound from a wall are
reported by [31]. In this previous study, the physical complexity of this fully non-linear problem is clearly exhibited, the vor-
tex interactions involving multi-scale processes like strong vorticity production at the wall, vorticity sheet detachment and
pairing. The combination of these effects leads to several impinging of the structures on the wall where secondary and ter-
tiary structures are created. More recently [7] have emphasized the difficulty to compute accurately the full dynamics of a
vortex-dipole rebound. The requirement for this problem, in terms of spatial resolution, is found to be unexpectedly high,
even when the spectral accuracy is reached through the use of Fourier or Chebyshev modes. From this point of view, the most
demanding phenomena correspond to high-vorticity patches created at the wall through the no-slip boundary condition. A
slightly misrepresentation of these patches can lead to erroneous predictions in the vortex interactions that follow the first
impinging of the vortex-dipole. Due to its high sensitivity to the numerical accuracy near the wall, the present problem of
vortex-dipole rebound can be considered as a very stringent benchmark to evaluate the impact of the present use of ghost
conditions near the boundaries. The methodology proposed by [7] is followed to initiate a dipole between two walls through
the superimposition of two isolated counter-rotating monopoles. The computational configuration of the previous section is
ty isocontours of the vortex-dipole rebound at three characteristic times. From top to bottom:t¼eft: spectral code of[15]



applied with no-slip conditions at y ¼ �h and periodicity in x-direction. The computational domain is a simple square
Lx � Ly ¼ 2h� 2h using nx � ny mesh nodes. The vortex rebound obtained in this exact domain configuration is reported
in [15] where the authors used a Fourier–Chebyshev code with a spatial resolution up to 2048� 1024 spectral modes. To
evaluate the accuracy of the present code for the vortex rebound problem, the highly accurate solution obtained by [15]
is considered as the reference one. The initial condition is exactly the same as in [15] where the counter-rotating monopoles
of radius 0:1h are located in the centre of the channel (y ¼ 0) with an horizontal separation of 0:2 h. The Reynolds number
Re ¼ Uh=m is 1000, where U is a velocity scale defined through the initial value Eð0Þ ¼ 2U2 of the total kinetic energy EðtÞ
defined as
EðtÞ ¼ 1

2h2

Z h

�h

Z h

�h
u2ðx; tÞdxdy ð74Þ
Note that for the vorticity distribution used to define the monopoles, the total enstrophy defined as
ZðtÞ ¼ 1

2h2

Z h

�h

Z h

�h
x2

z ðx; tÞdxdy ð75Þ
takes the initial value Zð0Þ ¼ 800U2=h2. For more details about the initial vorticity field used here (that is virtually zero at the
two walls y� h), see the reference studies [7,15].

In this section, the accuracy of the present code is compared with its spectral counterpart [15]. Additionally, a simulation
using the second-order code of [32] is also performed. The purpose is to compare the present partially staggered approach
with the more standard fully staggered approach while investigating the interest of sixth-order schemes despite the
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introduction of second-order accuracy near the wall, the more sensitive region with respect to numerical accuracy for this
physical problem. Two different refinements are used with nx � ny ¼ 256� 513 and nx � ny ¼ 128� 257. These two spatial
resolutions are significantly coarser than the reference one [15]. Indeed, the present purpose is to evaluate the behaviour of
each code at marginal resolution, the typical situation for which the present sixth-order code is dedicated. For both codes,
the mesh is refined near the walls. In practice, the mapping function (54) has been used for the present sixth-order code,
using c ¼ 1 and d ¼ 1=2 while adjusting the couple of stretching parameters ða; bÞ to ensure Dy ¼ 1:5 � 10�3 h at y ¼ �h.
A comparable stretching was used for the fully staggered second-order code but with the help of an hyperbolic tangent
as explained in [32].

For qualitative comparisons, vorticity isocontours obtained at three typical instants of the vortex rebound are presented
in Figs. 7 and 8 for the two codes under study with the data of [15] as reference results. For the highest resolution presented
here (see Fig. 7), both sixth- and second-order codes allow a physically realistic description of the vortex dynamic associated
with the vortex-dipole collision. Compared with the very accurate results of [15], the only visible differences concern the
results issued from the second-order code, the present sixth-order code leading to virtually identical results. However, a
more quantitative analysis shows that while the time evolution of the kinetic energy is well predicted by the two codes
(see Fig. 9, top right), significant errors can be observed concerning the total enstrophy (see Fig. 9, bottom right), especially
for the first and second peak (associated with the first and second rebound, respectively) that are too early predicted and
underestimated. These discrepancies are strongly reduced using the sixth-order code for which a satisfactory agreement
with the spectral results of [15] can be noticed in Fig. 9 (bottom left).

As expected, the use of a coarser mesh reinforces these trends. For the vorticity dynamics, the low resolution cases pre-
sented in Fig. 8 emphasize the interest of present sixth-order schemes that allow us to simulate realistically the vortex re-
bound despite the use of a very coarse mesh. Only some slight wiggles can be observed in the corresponding vorticity plots
with minor influence on the vortex dipole collision process. The good behaviour of the present sixth-order code can be con-
firmed by examining the total enstrophy evolution that remains accurately predicted for this computationally cheap calcu-
lation. In contrary, the second-order code leads to unrealistic prediction from the first rebound, with a continual increase of
the discrepancy with reference results of [15] when the flow is evolving in time. This loss of accuracy can been directly seen
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in vorticity visualisations presented in Fig. 8 where the vortex dynamics is found to be unreliable. Even the total kinetic en-
ergy is damaged during the simulation (see Fig. 9, bottom right) while the time evolution of the total enstrophy shows an
underestimation of the first peak,10 the second one being completely missed by the fully staggered second-order code when
the coarse mesh is used.

Note that the total kinetic energy and enstrophy are found to be significantly underestimated at t ¼ 0 for the fully stag-
gered second-order code at low resolution, despite the use of the same initial condition for both codes. This underestimation
is just an artefact related with the numerical integration required by definitions (74) and (75). When a fully staggered mesh
is used, the kinetic energy has to be first computed on pressure nodes through an interpolation procedure that tends to re-
duce the overall accuracy. Combined with the numerical integration based on the trapezoidal rule in y-direction, this error is
responsible of the slight reduction of the total kinetic energy at t ¼ 0. For the total enstrophy, interpolation and integration
errors are also introduced, with an additional contribution of the spatial derivation to compute the z-vorticity component,
leading to the marked difference of the initial total enstrophy between the sixth- and second-order cases despite the use of
exactly the same analytical initial condition given by [7,15]. In conclusion, present validations demonstrate the gain in accu-
racy offered by the use of compact sixth-order schemes despite the use of a second-order approximation for the pressure,
even for the present benchmark flow highly sensitive to the actual accuracy reached at the wall. Hence, in agreement with
the tests based on a linearly unstable Tollmien–Schlichting wave in previous section, and contrary to the steady flow con-
figuration of the cavity considered in Section 7.2,11 the use of ghost conditions for the pressure combined with high-order
schemes seems to increase advantageously the numerical accuracy. This property allows the present partially staggered
sixth-order code to efficiently simulate very complex vortical motions near a no-slip wall with exactly the same method as
for the pressure treatment when free-slip conditions are considered. This ability will be examined in the context of fully devel-
oped wall turbulence in the next section.

7.6. Turbulent channel flow

For the last validation test, a turbulent flow in presence of walls is investigated. The non-linear and multi-scale nat-
ures of that kind of flows correspond to the main application of the present code, dedicated to DNS/LES of turbulent
flows. Note that the flow configuration is the same as in the two previous sections (same boundary conditions in
x- and y-directions), with periodicity in z-direction. Two different DNS have been performed using the present partially
staggered sixth-order code and using the fully staggered second-order code of [32]. For both calculations, turbulent sta-
tistical data have been collected on a time period long enough to reach a statistical convergence. In this section, our anal-
ysis focuses on the ability of each DNS to provide relevant profiles of fluctuating velocity, vorticity or pressure root mean
square (r.m.s). Corresponding statistics associated with the previous DNS of [29] are presented for comparison. In this
reference calculation, pseudo-spectral methods are used using nx � ny � nz ¼ 128� 129� 128 de-aliased modes to dis-
cretize a computational domain of Lx � Ly � Lz ¼ 4ph� 2h� 4ph=3 for a nominal value of hþ ¼ 180 where superscript
þ indicates a conventional scaling based on the friction velocity us and the kinematic velocity m. For the reference data,
the exact value is hþ ¼ 178:1 while the Reynolds number based on the bulk velocity is Re ¼ Umh=m ¼ 2793. Both calcu-
lations presented here have been carried out using the same computational domain while a constant longitudinal mean
pressure gradient is imposed to also reach the nominal value of hþ ¼ 180. To evaluate the behaviour of each code at mar-
ginal resolution, a coarse mesh of nx � ny � nz ¼ 128� 129� 84 nodes is used. It is important to note that this resolution
corresponds to the one tested by [32] to show the ability of a fully staggered second-order code to provide accurate tur-
bulent statistics in a channel. Note in particular that the reference DNS of [29] based on spectral methods is more
computationally expensive, not only because of the 128 Fourier modes in z-direction (instead of 84 mesh nodes in the
present DNS), but also because of the de-aliasing procedure that requires to consider 50% more collocation nodes
(3/2 rule) in each direction. For the present turbulent channel flow configuration, when the sixth-order code is used,
aliasing errors are reduced using the set of coefficients with c – 0 for the second derivative calculation (14), whereas
no aliasing treatment is performed when using the second-order code. As in the previous section, a stretching is applied
in y-direction to concentrate mesh nodes near the walls at y ¼ �h, with the first adjacent node to the wall located at
yþ ¼ 1 for both codes.

Compared with reference data of [29], mean velocity profiles are found to be in excellent agreement for the present par-
tially staggered sixth-order code but also for the fully staggered second-order code. Note that the values of friction velocity
associated with present statistics leads to hþ ¼ 180:2 and hþ ¼ 182:2 for the sixth- and second-order code, respectively, with
the same corresponding Reynolds numbers Re ¼ 2843, in good agreement with those obtained by [29]. Profiles of velocity
and vorticity r.m.s obtained using the second- or sixth-order code are presented in Figs. 10 and 11. The improvement of sta-
tistical predictions offered by the use of sixth-order schemes can be clearly observed. Reminding that results of [29] have the
spectral accuracy, the excellent agreement obtained using the present partially staggered sixth-order code can be considered
10 Note that the prediction of the first peak is unexpectedly better than for the higher resolution. This misleading behaviour can be attributed to an artefact of
spurious vorticity creation at the wall that artificially offsets the misrepresentation of the first collision.

11 Note that in additional tests (not presented in this paper for clarity), the use of second-order schemes only for the pressure (slightly more accurate than
their sixth-order counterparts for the cavity flow), has been found clearly less favourable for the vortex-dipole collision problem, a full treatment using sixth-
order schemes being by far the best combination for all the unsteady problems considered.
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as being satisfactory. Indeed, the second-order approximation introduced by the use of ghost conditions (in y-direction) does
not seem to deteriorate the quality of statistical predictions. The use of standard second-order schemes based on a fully stag-
gered approach (where no ghost conditions are necessary) does not lead to the same accuracy, especially for the prediction of
the spanwise velocity fluctuations that are found significantly underestimated almost everywhere. Concerning the two other
Reynolds stress components, a slight under-prediction can also be observed, but mainly in the core of the channel. Note that
these behaviours are fully consistent with the observations reported by [32] who emphasized the remarkable ability of a
fully staggered second-order code to provide comparable turbulent statistics with those given by a spectral code. Thus, as
far as Reynolds stresses are concerned, the improvement offered by sixth-order schemes gives a significant but not decisive
advantage to the present code. However, if additionally accurate predictions of vorticity fluctuations are expected, a more
marked discrepancy with [29] is found using the fully staggered second-order code whereas a very good agreement is again
recovered with the present partially staggered sixth-order code (see Fig. 11). The better prediction of vorticity fluctuations
provided by the partially staggered sixth-order code confirms the ability of high-order schemes to maintain accuracy at the
smallest scales allowed by the computational mesh.

A rather critical question for incompressible code is related to the physical relevance of the pressure field used to ensure
the incompressibility. Schematically, a pressure field computed through a Poisson equation can lead to a satisfactory diver-
gence free condition for the velocity while not being accurate enough to be used for physical analysis. This behaviour can be
spectacular when singular modes contaminate the pressure field without having significant effect on pressure gradients in
the governing equations. In the present code, singular modes are perfectly cancelled so that the pressure field should be
physically relevant. To check the lack of unphysical oscillations on the pressure, several instantaneous fields have been
extensively analysed with the help of 2D and 3D visualisations, and no anomaly has been detected. To evaluate quantita-
tively the truthfulness of the pressure estimation, the r.m.s of fluctuating pressure are presented in Fig. 12. As for the velocity
and vorticity statistics, an excellent agreement with reference data of [29] is found with the partially staggered sixth-order
sixth-order DNS (left), second-order DNS using the code of [32](right).Symbols:[29]. — , + :
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Fig. 12. R.m.s of the fluctuating pressure. Lines: present, sixth-order DNS (left), second-order DNS using the code of [32] (right). Symbols: [29].
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code. By contrast, the agreement for the pressure statistics is found to be less favourable when the fully staggered second-
order code is used even if the staggered approach eliminates all the singular modes without requiring to remove them in
spectral space. This significant change in the quality of statistics depending on the physical quantity under study suggests
that the pressure is more demanding in terms of numerical accuracy.

In conclusion, for the present developed turbulent flow, in agreement with the tests presented in the previous sections for
the early transitional case and the dipole-vortex rebound, the use of sixth-order schemes is found to reduce significantly the
computational cost requirement by allowing the use of a marginal resolution to describe accurately the flow dynamics. Note
finally that this advantage is more decisive for the prediction of statistical quantities highly sensitive to small scale motions
as the vorticity, as well as the pressure r.m.s that is found to be more receptive to numerical errors than Reynolds stresses at
marginal resolution.
8. Discussion and conclusion

A numerical strategy suitable for DNS/LES of incompressible flows is presented in this paper. The approach proposed is
based on a mixed method where the spatial differentiation is mainly performed in physical space whereas the treatment of
the Poisson equation is carried out in spectral space. The simplicity of the method is presented through basic rules that allow
the use of high-order schemes via an equivalent formulation in physical and spectral spaces using the concept of the mod-
ified wave number. Compared with a fully spectral code based on Fourier or Chebyshev expansion, the present mixed ap-
proach allows us to consider a wider variety of boundary conditions. Moreover, it is shown that an IBM can be favourably
combined with the present code in order to consider complex solid body geometries. However, in this specific context, val-
idation results lead us to recommend the use of a partially staggered mesh that eliminates the grid to grid oscillations from
the pressure field. Because such a staggering does not introduced a significant computational effort, the fully collocated ap-
proach can be left behind whatever the flow configuration considered, with or without IBM.

The computational efficiency of present Poisson solver can be evaluated through its relative cost (with respect to the full
solving of Navier–Stokes equations) that is found in practice to be less than 10% or 15% for a regular or stretched mesh
respectively. Such a cost, satisfactory regarding the high-order accuracy of present numerical schemes, is made possible
by the modified spectral formalism. It allows the direct inversion of the Poisson equation to obtain the incompressibility con-
dition up to the machine accuracy. Furthermore, the non-iterative nature of the solver determines its fixed computational
cost whatever the numerical configuration (set of boundary conditions or stretching intensity of the mesh).

In terms of code development, the proposed treatment for the pressure field is light because it only requires the use
conventional 3D FFT, available in most of scientific Fortran or C libraries for instance. The partially staggered approach al-
lows the treatment of all types of boundary conditions with only one version of 3D FFT (the more conventional one). In-
deed, shifted cosine Fourier transforms are the easiest to deduce from conventional FFT. The other developments for the
pressure treatment are based on elementary operations where modified wave numbers and transfer functions just need
to be properly defined. The more ‘‘advanced” numerical development is related to the use of a stretched mesh (in one
direction) that requires to invert a pentadiagonal matrix (basic algebraic operation in the code). Another main advantage
of the present pressure treatment is its ability to be easily ported on parallel supercomputers. It is well known that the
elliptic nature of the Poisson equation needs important code development to accommodate conventional solver to parallel
architecture. However, because parallel version of 3D FFT are already available in several scientific libraries, the portability
only concerns the very simple expression of the Poisson equation in spectral space that does not require communications
among processors. The full adaptation of present code to parallel supercomputers using Message Passing Interface (MPI)
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has been recently carried out. Using a 1-D domain decomposition [36], an excellent scalability of the code has been
achieved up to 1024 processors and up to six billion mesh nodes, confirming that present numerical strategy is relevant
for parallel computing.

Regarding the accuracy, the present approach allows the use of the same numerical schemes in the three spatial
directions whatever the set of boundary conditions. Formally, the use of sixth-order compact schemes leads to a formal
sixth-order accuracy when boundary conditions are periodic or free-slip. However, the use of the same schemes for Dirichlet
conditions on the velocity (for instance, no-slip or inflow/outflow boundary conditions) needs to perform a specific treat-
ment near the borders that limits the overall algorithm to second-order accuracy in the corresponding direction. However,
the technique proposed in this study maintains the spectral nature of the Poisson solver through a relevant use of ghost
boundary conditions compatible with cosine Fourier transforms and homogeneous Neumann conditions for the pressure.
For the Poisson solver, the use of Neumann condition allows the same treatment of the pressure as for free-slip conditions.
In practice, for DNS of unsteady transitional or turbulent flows, the use of sixth-order compact schemes is shown to be
advantageous compared with standard second-order schemes. This benefit is preserved even when the formal accuracy is
only second order because of the use of no-slip boundary conditions.

In conclusion, present numerical methods seem to be a good compromise in terms of computational cost and accuracy.
The various flow configurations considered in this paper lead us to recommend the use of high-order schemes even if the
formal accuracy of the overall numerical procedure provides a lower order. DNS/LES of turbulent flows is probably the typ-
ical context for which quasi-spectral accuracy seems to be useful, even when it is reduced by the boundary condition treat-
ment. At marginal resolution, our belief is that the improvement of the results offered by the use of high-order schemes is
sufficient to justify the moderate numerical developments they need. In comparative tests, it can be shown that the overall
increase of the computational cost introduced by the use of sixth-order compact schemes (in the three spatial directions) is
about 100% compared with the standard use of second-order schemes. Regarding the gain offered by quasi-spectral accu-
racy,12 this increase suggests clearly that the use of high-order schemes based on a partially staggered approach is an effi-
cient strategy to solve the incompressible Navier–Stokes equations. Note finally that the sixth-order version of the present
code has already been used for the study of spatially evolving flows (inflow/outflow boundary conditions in the streamwise
direction) in presence of immersed boundaries. Some results associated with these studies are reported in [18,19,22,23].
More recently, [20,21] have performed DNS of turbulent flows generated by fractal grids (modelled with IBM) with the
new parallel code. The use of a very large number of mesh nodes (up to six billion) has allowed them to consider realistic
turbulent states reliable to reference experimental data [14].
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Appendix A. Error introduced by ghost conditions

Near the border i ¼ 1, the sixth-order compact scheme (13) can be written
12 In t
given a
af 00 þ f 01 þ af 02 ¼ a
f2 � f0

2Dx
þ b

f3 � f�1

4Dx

af 01 þ f 02 þ af 03 ¼ a
f3 � f1

2Dx
þ b

f4 � f0

4Dx
ðA:1Þ
where f0; f�1 and f 00 are values located outside from the computational domain x 2 ½0; Lx�. For these two expressions, the ghost
conditions associated with the assumption that f is symmetric in x ¼ 0 can be written
f0 ! f2; f�1 ! f3; f 00 ! �f 02 ðA:2Þ
To evaluate the formal error introduced by with these substitutions, it is easy to show with Taylor series expansion that
f2 � f0 ¼ 2Dxf 01 þ OðDx3Þ
f3 � f�1 ¼ 4Dxf 01 þ OðDx3Þ
f 00 þ f 02 ¼ 2f 01 þ OðDx2Þ ðA:3Þ
he context of DNS/LES, present tests suggest that the use of sixth-order schemes allows the use of about twice less mesh nodes in each direction for a
ccuracy, so that the computational cost of a 3D DNS can be significantly reduced.
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For a general function (which does not satisfy the condition f ðxÞ ¼ f ð�xÞ) with a zero derivative function f at x ¼ 0 ðf 01 ¼ 0Þ,
the previous relations show that the ghost conditions are third-order accurate for f and second-order accurate for f 0, so that
the two near-border schemes (A.1) can be rewritten as
f 01 ¼ 0

f 02 þ af 03 ¼ a
f3 � f1

2Dx
þ b

f4 � f2

4Dx
ðA:4Þ
through the introduction of an additional approximation of second-order accuracy. This conclusion can be easily recovered
near i ¼ nx (right boundary), while remaining valid for a staggered scheme of the form (20). The second-order accuracy can
also be demonstrated for antisymmetric conditions (assuming in this case f1 ¼ 0) with ghost conditions expressed by the
relations (17).
Appendix B. Introduction of aliasing error in the spectral operator for the derivation on a stretched mesh

The purpose of this Appendix is to exhibit the introduction of aliasing when a metric is used to compute a spatial deriv-
ative on a stretched mesh in physical space. Furthermore, it will be shown how the spectral operator associated with the
same derivative must be modified to lead exactly to the same result (physical/spectral equivalence). Note that only the peri-
odic case is discussed in this section, but similar conclusions can be drawn for symmetric or antisymmetric boundary con-
ditions based on cosine or sine Fourier transforms, respectively.

The product of the metric
1
h0i
¼ a�1eik�1si þ a0 þ a1eik1si ðB:1Þ
by
@f
@s

				
i

¼
Xny=2�1

m¼�ny=2

ik0mf̂ meikmsi ðB:2Þ
leads to
@f
@y

				
i

¼
Xny=2�1

m¼�ny=2

ia�1k0mf̂ meikm�1si þ ia0k0mf̂ meikmsi þ ia1k0mf̂ meikmþ1si

� �
ðB:3Þ
To express the convolution product while distinguishing its specific form near the bounds of these truncated Fourier series,
two terms have to be rewritten as
Xny=2�1

m¼�ny=2

ia�1k0mf̂ meikm�1si ¼
Xny=2�2

m¼�ny=2�1

ia�1k0mþ1 f̂ mþ1eikmsi

Xny=2�1

m¼�ny=2

ia1k0mf̂ meikmþ1si ¼
Xny=2

m¼�ny=2þ1

ia1k0m�1 f̂ m�1eikmsi ðB:4Þ
leading to
@f
@y

				
i

¼
Xny=2�2

m¼�ny=2þ1

ia1k0m�1 f̂ m�1 þ ia0k0mf̂ m þ ia�1k0mþ1 f̂ mþ1

� �
eikmsi þ ia0k0�ny=2 f̂�ny=2 þ ia�1k0�ny=2þ1 f̂�ny=2þ1

� �
eik�ny=2si

þ ia1k0ny=2�2 f̂ ny=2�2 þ ia0k0ny=2�1 f̂ ny=2�1

� �
eikny=2�1si þ ia1k0ny=2�1 f̂ ny=2�1 eikny=2si|fflfflffl{zfflfflffl}

¼e
ik�ny=2 si

þia�1k0�ny=2 f̂�ny=2 eik�ny=2�1si|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼e

ikny=2�1 si

ðB:5Þ
Due to the identity eikmsi ¼ eikmþny si , the two last harmonics of this expression are aliased so that the final expression of the
(aliased) convolution product is
@f
@y

				
i

¼
Xny=2�2

m¼�ny=2þ1

ia1k0m�1 f̂ m�1 þ ia0k0mf̂ m þ ia�1k0mþ1 f̂ mþ1

� �
eikmsi

þ ia0k0�ny=2 f̂�ny=2 þ ia�1k0�ny=2þ1 f̂�ny=2þ1 þ ia1k0ny=2�1 f̂ ny=2�1

� �
eik�ny=2si

þ ia�1k0�ny=2 f̂�ny=2 þ ia1k0ny=2�2 f̂ ny=2�2 þ ia0k0ny=2�1 f̂ ny=2�1

� �
eikny=2�1si
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In spectral space through the matricial writing (58), the resulting matrix A is
13 All
A ¼

ia0k0�ny=2 ia�1k0�ny=2þ1 ia1k0ny=2�1

ia1k0�ny=2 ia0k0�ny=2þ1 ia�1k0�ny=2þ2

. .
. . .

. . .
.

ia1k0m�1 ia0k0m ia�1k0mþ1

. .
. . .

. . .
.

ia1k0ny=2�3 ia0k0ny=2�2 ia�1k0ny=2�1

ia�1k0�ny=2 ia1k0ny=2�2 ia0k0ny=2�1

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

Then, the aliased matrix B ¼ AA associated with the second derivative can be easily deduced. Note that due to the aliasing
terms, these two matrices become cyclic. In terms of computational efficiency, the cyclic nature of B would increase the cost
of the inversion required to solve the Poisson equation under the form (62). However, with the aid of Hermicity (f̂ m ¼ f̂ ��m),13

it is easy to restore the purely pentadiagonal form of B in its aliased form.
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